LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – STATISTICS

SECOND SEMESTER – APRIL 2010

ST 2813 - SAMPLING THEORY

Date & Time: 21/04/2010 / 1:00 - 4:00 Dept. No.

Max. : 100 Marks

SECTION - A

Answer ALL questions. Each carries TWO marks. (10 x 2 = 20 marks)

- 1. Explain the terms parameter and statistic with a suitable example for each term.
- 2. Define the two types of Sampling Designs with suitable example for each type.
- 3. Find E [I_i(s)] and E [I_i(s)I_j(s)]; i, j = 1, 2, ..., N; $i \neq j$ under any sampling design P(.).
- 4. Derive mean and variance of inclusion indicator under any sampling design.
- 5. Check whether or not s_y^2 is unbiased for S_y^2 under Simple Random Sampling Design.
- 6. Explain the Linear Systematic Sampling Scheme and define its probability sampling design.
- 7. Explain Random Group Method of Sampling and construct an estimator for population total under this method.
- 8. Show that \hat{Y}_{LR} is more efficient than \hat{Y}_R unless $\beta = R$.
- 9. Explain the cumulative total method and show that it is a PPS selection method.
- 10. Describe Multistage Sampling.

SECTION – B

Answer any FIVE questions. Each carries EIGHT marks. $(5 \times 8 = 40 \text{ marks})$

- 11. In Simple Random Sampling Design, explain the unit drawing mechanism and prove that the mechanism implements the design.
- 12. Show that for any fixed size sampling design,

(i)
$$\sum_{j=1}^{n} \pi_{ij} = (n-1)\pi_{i}; \quad j \neq i$$

and (ii) $\sum_{j=1}^{n} (\pi_{i}\pi_{j} - \pi_{ij}) = \pi_{i} (1 - \pi_{i}); \quad i = 1, 2, ..., N; \quad j \neq i.$

- 13. Compare the efficiency of \hat{Y}_{LSS} and \hat{Y}_{SRS} when the population is linear.
- 14. Why do we use Desraj ordered estimator instead of Horwitz Thompson estimator under PPSWOR sampling scheme? Is Desraj ordered estimator unbiased for population total? Justify your answer.
- 15. In Midzuno Sampling Design, prove that the estimated variance of $Y_{\rm HT}$ is non-negative for all samples "s " receiving positive probabilities.

16. In LSS, when the population is linear, derive Yates's corrected estimator for estimating population total without error.
17. Obtain the estimated variance of \hat{Y}_{DR} for any sample size " n ".
18. Describe Warner's randomized response technique for estimating the population proportion Π_A .
SECTION – C
Answer any TWO questions. Each carries TWENTY marks. $(2 \times 20 = 40 \text{ marks})$
19 (a) Give an example to show that an estimator can be unbiased under one design but biased under another design. (10)
(b) Obtain the formula for π_i and π_{ij} under SRS Design and hence find \hat{Y}_{HT}
and V (\hat{Y}_{HT}). (10)
20 (a) Describe the Regression estimation procedure and find the approximate bias
and mean square error of \hat{Y}_{LR} . (10)
(b) Obtain the expression for Y_{St} , $V(Y_{St})$ and $v(Y_{St})$ under the design (i) SRSWOR (ii) PPSWR. (10)
21. Derive the approximate bias and mean square error of the estimator \hat{Y}_R and hence obtain their expressions under (i) SRSWOR, (ii) PPSWR, and (iii) Midzuno Sampling.
22 (a) A SRS of size $n = n_1 + n_2$ with mean $\frac{A}{Y}$ is drawn from a finite
population of N units and a SR Subsample of size n_1 is drawn from it with
mean $\frac{\Lambda}{Y_1}$. Find V ($\frac{\Lambda}{Y_1} - \frac{\Lambda}{Y_2}$), where $\frac{\Lambda}{Y_2}$ is the mean of the remaining
n_2 units in the sample. (12)
 (b) Derive the variance of (i) Hansen – Horwitz estimator in double sampling
(ii) Estimator \hat{Y}_{TS} in Two – Stage Sampling. (8)
XXXX